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Abstract: Visual navigation using only a single camera and a topological map
has recently become an appealing alternative to methods that require additional
sensors and 3D maps. This is typically achieved through an image-relative ap-
proach to estimating control from a given pair of current observation and sub-
goal image. However, image-level representations of the world have limitations
because images are strictly tied to the agent’s pose and embodiment. In con-
trast, objects, being a property of the map, offer an embodiment- and trajectory-
invariant world representation. In this work, we present a new paradigm of learn-
ing object-relative control that exhibits several desirable characteristics: a) new
routes can be traversed without strictly requiring to imitate prior experience, b)
the control prediction problem can be decoupled from solving the image match-
ing problem, and c) high invariance can be achieved in cross-embodiment deploy-
ment for variations across both training-testing and mapping-execution settings.
We propose a topometric map representation in the form of a relative 3D scene
graph, which is used to obtain more informative object-level global path plan-
ning costs. We train a local controller, dubbed ObjectReact, conditioned directly
on a high-level “WayObject Costmap” representation that eliminates the need
for an explicit RGB input. We demonstrate the advantages of learning object-
relative control over its image-relative counterpart across sensor height variations
and multiple navigation tasks that challenge the underlying spatial understanding
capability, e.g., navigating a map trajectory in the reverse direction. We further
show that our sim-only policy is able to generalize well to real-world indoor en-
vironments. Code and supplementary material are accessible via project page:
https://object-react.github.io/
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1 Introduction

Navigating in a seen environment is typically accomplished by constructing dense 3D maps, often
also using 3D sensors (LiDAR or depth camera). Although capable, these methods still need to rely
on rich visual information to effectively understand instructions/goals expressed in natural language.
An alternative to 3D based methods is visual topological navigation using only a single camera
and a topological map [1, 2], which is often inspired by the navigation abilities of humans. Earlier
approaches to topological navigation were mostly limited to teach-and-repeat, which often employed
some form of image-based visual servoing to estimate robot velocities given an image pair. Recent
methods have proposed to ‘learn’ to predict control signal from the current view and a subgoal
image, where the subgoals are generated by a global planner using the topological connectivity of
images captured previously from that environment [1, 3].

https://object-react.github.io/
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Figure 1: Tasks: Each column shows a topdown view with the prior experience (map) trajectory
displayed as a purple path from the purple circle (start) to green point (goal). The tasks are referred to
as following: Imitate which is akin to teach-and-repeat; Alt-Goal, where the goal object is previously
seen but unvisited; Shortcut, where the prior trajectory is made longer for agent to take a shortcut
during inference; and Reverse, where agent travels in the opposite direction.

The aforementioned approaches to visual topological navigation can be classified as image-relative.
Although promising, they remain constrained by their strong reliance on the robot’s pose and em-
bodiment when using image subgoals based on an image-level topological world representation.
In contrast, objects, being a property of the map, offer an embodiment- and trajectory-invariant
world representation. Using an object connectivity-based subgoal representation, we present a new
paradigm of learning object-relative control by directly conditioning on the object subgoals visible
in the current image. This eliminates the concept of having a separate subgoal image and its corre-
sponding limitations of pose and embodiment specificity. As a result, our object-relative controller
exhibits more desirable capabilities: a) new routes can be traversed, as there is no dependency on
retrieving a subgoal image from the prior experience, b) control prediction is no longer required to
solve an image matching problem between the current RGB and the subgoal image, thus simplify-
ing the learning problem, and c) cross-embodiment generalization across the mapping and execution
phases can be easily achieved, which would otherwise require quadratically larger datasets to cover
different embodiment combinations across the current RGB and the subgoal image observations.

We make the following novel contributions towards an object-relative navigation stack: i) a rela-
tive 3D scene graph (3DSG) representation based on a topometric object-level graph, where inter-
image object associations use topological connectivity and intra-image object connectivity is based
on relative 3D information; ii) a new local controller, dubbed ObjectReact, conditioned on a “Way-
Object Costmap” representation of the object segmentation masks and their path lengths; and iii)
a challenging set of navigation tasks (see Figure 1 and Section 4) that tests the agent’s ability to
effectively understand its environment from a limited prior experience.

2 Related Work

Topological approaches to mapping provide an alternative to constructing globally-referenced 3D
metric maps for visual navigation. Previous approaches have made extensive use of 3D maps [4–8],
either pre-generated [9, 10] or built during exploration [11–16]. These map representations also
exist in the form of 3DSG [17, 18], used for planning [19, 20] and navigation [21–25]. In this work,
we focus on a scene graph representation based on intra-frame relative 3D object connectivity and
inter-frame topological object connectivity, without relying on agent poses, sensor depth or a global
frame of reference.

Image-Relative Subgoal Control: In the context of prior map-based navigation, SPTM [1], in-
spired by landmark-based navigation in animals, constructs a topological map with images as nodes,
and trains a controller to navigate using this map. Recent works have expanded on this idea by
training a controller that can generalize across multiple embodiments and environments [3], per-
form long-horizon tasks [26], use goals specified via language [27], and learn to explore when the
map is incomplete [2, 28]. The inter-image edges in these methods are weighted by temporal dis-
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tance [1, 29–31], which is either estimated or deduced. This distance estimator is used to obtain
a subgoal image, which is then used in combination with the current observation to obtain a con-
trol signal. We refer to this class of methods as image-relative, where a control signal is obtained
such that the robot can move from its current position to where the subgoal image from the map
was captured. Such controllers (or local trajectory planners) can be based on either action/behavior
look-up [32–34], learning [1, 27, 35–42] or visual servoing [34, 43–52].

Object-Relative Subgoal Control: Distinct from image-relative approaches, subgoals can also be
defined at a local level based only on the current image observation. Recent works in this direction
include RoboHop [53], PixNav [54], and TANGO [55], which respectively use objects, a pixel and
a 3D point as the subgoal representation in robot’s current observation. While these approaches
provide a language-based semantic representation that aids in effective global path planning, their
local controllers have limitations. RoboHop’s zero-shot controller uses fixed linear velocity which
is prone to collisions. PixNav’s discrete action controller, trained to solve short-horizon naviga-
tion using memory-based pixel tracking, tends to overfit to the scene layout. TANGO’s occupancy
grid-based controller relies on explicit traversability estimation and needs a fallback strategy when
traversable regions are out of view. In this work, we focus on obtaining a general, open-set rep-
resentation of the object subgoals, which is amenable to learning a continuous action controller
conditioned only on the currently-viewed objects. We refer to this as an object-relative approach to
navigation where its subgoal conditioning variable, being a property of the map, is invariant to the
agent’s pose and embodiment, unlike its image-relative counterpart.

Objects and Semantics for Navigation in Unseen Environments: Object-level information in
terms of semantic or spatial relations is often used for navigating to a given goal in an unseen envi-
ronment. BRM [56] learns room-level semantic relations to predict subgoals; [57] learns to semanti-
cally reason about novel objects; ORG [58] specifically learns inter-object spatial correlations; [21]
learns a navigation policy on a rich 3DSG representation; TSGM [15] learns action prediction using
a joint image- and object-level representation; and OVG-Nav [59] predicts ‘object values’ using sim-
ulator’s geodesic distances, as opposed to the use of odometry to predict intra-image distances [60].
However, most of these methods represent graph nodes as images tied to the agent’s poses, unlike
our object connectivity-based scene graph representation. Moreover, the navigation task for unseen
environments inherently focuses on learning to predict a proxy for global path planning, which dif-
fers from determining paths through search algorithms [61] to navigate in seen environments, thus
posing different implications on the design choice of underlying representation.

Prior Experience-based Navigation: Topological navigation has frequently been approached from
the perspective of the visual teach-and-repeat task [37, 62–71]. These methods use image-based
visual servoing to repeat a ‘teach’ run, which is a prior trajectory from the same environment. This
approach can be generalized via experiential learning of robot navigation [72], where a general
navigation policy is learned from large, real-world navigation datasets [2]. Such policies can ex-
hibit strong generalization across environments and embodiments, and learn a general understanding
of fundamental navigation affordances like traversability, reachability, and exploration [3, 26, 28].
However, such methods are still based on an image-relative control prediction, which has several
limitations unlike our proposed object-relative navigation approach. In particular, we decouple our
navigation stack into an embodiment-invariant perception module and a prior trajectory-invariant
control learning module: our perception system is characterized by its open-set and zero-shot capa-
bilities with the use of models like SAM [73–75] and LightGlue [76], whereas our control module
is conditioned on a high-level ‘WayObject Costmap’ representation and does not require an explicit
RGB input. This unique combination aims to maximize generalization across embodiments and a
more challenging set of navigation tasks.

3 Approach

Our object-relative navigation pipeline revolves around a representation of the world in the form of
object-level connectivity. There exist different ways in which this connectivity can be established.
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Figure 2: Object-Relative Navigation Pipeline. a) Mapping: We construct a topometric map as
a relative 3D scene graph, where image segments are used as object nodes, which are connected
intra-image using 3D Euclidean distances and inter-image using object association. b) Execution:
Given the map, we localize each of the query objects and compute its path to the goal node; we
assign these path lengths to the object’s segmentation mask, forming a “WayObject Costmap” for
control prediction. c) Training: We train a model to learn an “ObjectReact” controller that predicts
trajectory rollouts from WayObject Costmaps.

It can be characterized in terms of the topology being flat [53] versus hierarchical [17], and con-
nections that range from being purely topological [53] to being fully metric [5]. In this work, we
build on RoboHop’s [53] object-level topological mapping. RoboHop connects objects within an
image through a 2D Delaunay triangulation of the objects’ pixel centers. Such connectivity is prone
to geometric ambiguity which affects the shortest-path computation during planning, thus poten-
tially misguiding the controller. We address this limitation through a more informative relative 3D
connectivity. Using this novel map representation, we use RoboHop’s object-level localization and
planning to obtain object-level paths to the goal. While RoboHop uses a zero-shot proportional yaw
controller, in this work, we propose a controller that learns to react to objects. This uses the object-
level path lengths in the form of a dense representation, dubbed WayObject Costmap, to predict a
trajectory rollout. In the following sections, we describe our object-relative navigation pipeline in
terms of three distinct phases: mapping, execution, and training, as also explained in Figure 2.

3.1 Mapping Phase: Relative 3D Scene Graph

Image Segments as Object Nodes: Given a prior map in the form of an image sequence, we
use a foundational model, such as SAM2 [74] or FastSAM [75], to extract open-set, semantically-
meaningful segmentation masks. For each image segment, we represent an object node in a graph
G using its 2D binary segmentation mask array Mi and a 3D coordinate pi, which is defined as
the farthest point on the object in a local frame of reference. Unlike 3D mapping techniques that
simultaneously estimate camera pose and global scene geometry, we are only interested in a relative
3D layout of objects in an image. We use monocular depth estimation [77] and an arbitrary but fixed
focal length to project the 2D object pixels into 3D.

Intra-image Edges: Given the object nodes in an image, we create intra-image edges using all pairs
of objects. We use the Euclidean distance ei j between the 3D coordinates of the object pairs as edge
weights. This relative 3D intra-image connectivity is much more informative in global path planning
than a purely 2D connectivity based on object pixel centers, e.g., that used in [53]. We ablate these
two types of connectivity in Section 5.3.

Inter-image edges: We create inter-image edges by tracking objects across consecutive frames
using local feature matching. Specifically, we extract SuperPoint [78] keypoints and descriptors,
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and match them using LightGlue [76] to identify pixel-level correspondences between an image
pair. Using this, segment-level correspondences are established on the basis of the number of pixel-
level correspondences that fall into that segment pair. For these inter-image edges, we use an edge
weight of 0 (equivalent to merging nodes) so that the global planner does not incur any cost on
traversing these edges to find the shortest path to the goal.

3.2 Execution Phase: Object Localizer, Global Planner, and Local Controller

During task execution, we follow RoboHop’s object localization and global path planning method.
Using the aforementioned segment matching approach, we obtain map object nodes that match with
the query object nodes. The global planner computes path lengths from these matched map nodes
to the long-horizon goal node using Dijkstra’s algorithm [61]. For a query node having multiple
matches, the map node with the least path length is selected. Using these path lengths and the
segmentation masks, we define a novel representation to learn a local controller which predicts a
trajectory rollout, as described in the following section.

3.3 Training Phase: The ObjectReact Controller

One of the most common ways of supervising a goal-conditioned control policy is to predict a control
signal given a pair of current RGB image and a subgoal image [1, 3], similar to image-based visual
servoing [43, 47]. In this work, we represent subgoals in the form of a WayObject costmap, obtained
from the path lengths and the segmentation masks of each of the visible objects in the current RGB
image. This forms an interpretable representation in terms of a visual distribution of attractiveness
of the objects so that a model can learn to react to these attracting (where to go) and repelling (where
not to go) objects.

WayObject Costmap: Since our aim is to learn a local controller conditioned on object-level costs,
we consider the following aspects to represent our conditioning variable: i) Local Cost Distribution:
the path lengths obtained from the planner are the absolute global costs; this can bias training in
terms of episode lengths or distance to final goal, and it may not generalize across different types
of edge weights used for planning (e.g., 2D vs. 3D). We address this by normalizing the costs
per image, as intuitively only a local distribution of subgoal costs should be needed to predict a
control signal. ii) Object’s Spatial Distribution: we need to represent the objects themselves while
considering a variable number of objects for every image. To address this, we combine the segmen-
tation masks of the objects and their path lengths to form a multi-channel image, dubbed WayObject
Costmap WH×W×D, where a pixel value corresponds to the path length of the object that it belongs to.
Instead of directly using the scalar costs, we use a D-dimensional encoding E to represent the cost.
This is obtained by rescaling the costs and converting them into sine-cosine embeddings, similar to
the positional encoding used in transformer architectures [79]. Please refer to Appendix Section A.1
for further details. Thus, W not only accommodates a variable number of objects per image but also
retains spatial and semantic information. This also helps to eliminate the need for an explicit RGB
input for learning control, as demonstrated in the ablation studies in Section 5.3.

Trajectory Prediction: In this work, we aim to establish distinctive properties of object-relative
navigation in contrast to image-relative navigation. Thus, we adapt an existing image-relative con-
troller’s training pipeline, which enables direct ablative analyses to clearly highlight the benefits
of our proposed approach. We use GNM [3] for this purpose with two key variations: a) we use
HM3D’s photorealistic environment to generate training data, and b) we use a custom goal encoder
to facilitate multi-channel input of the WayObject Costmap WH×W×D. We provide details for the
model architecture and loss functions in the Appendix Section A.2.

Training Data: We use Habitat-Matterport 3D dataset (HM3Dv0.2) [80] to train and evaluate our
proposed method and the image-relative baseline GNM [3]. Specifically, we use the training and
validation set of the InstanceImageNav challenge set (IIN-HM3D-v3) [81]. For each of the 145
unique scenes in the IIN-train set, we uniformly sample 20 episodes. For each episode, we use
its start and end agent states to compute the shortest path using the simulator’s geodesic distance
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estimator. We convert these 2D path coordinates into an interpolated 3D trajectory composed of
pure translations of 0.2m and pure rotations of 15◦. For training the controller, we further split the
IIN-train set to create 80/20 train/val sets. For generating WayObject Costmaps during training, we
use the object instances and depth from the simulator to create a topometric map. As we normalize
the path lengths per image, our controller trained with simulator-based costmaps is still able to gen-
eralize to the costmaps obtained from inferred segmentation, matching, and depth during mapping.
There also exist image segments that were either not detected, mismatched during localization (dur-
ing execution phase), or did not have a valid path length; we mark these as outliers in the costmap
by using a fixed high cost. To further improve generalization from training costmaps to deployment
costmaps, we perform a data augmentation where the cost of 30% of the segments is replaced by the
outlier cost at random.

4 Experimental Setup

Evaluation Dataset: We use the IIN-val set to evaluate navigation performance. It has 36 unique
scenes from which we sample one episode each. For each episode, we compute a 3D trajectory as
described earlier, which serves as the prior map. In the offline mapping phase, we compute a relative
3DSG using RGB images and relative monocular depth. For evaluating navigation performance, i.e.,
the online execution phase, we initialize the agent along the map trajectory such that it is at least
(geodesically) 5m [54] away from the goal – this involves crossing multiple rooms and corridors
on the same floor of the house. In all our experiments, the agent is given access to ground truth
localization in the form of map image index which is closest to the agent’s current 2D position.

Evaluation Metrics: We evaluate a controller’s ability to navigate to an object goal in a given
episode. We use an oracle stop condition, i.e., an episode is deemed successful if the robot reaches
within 1m [82] of the goal position in maximum 300 steps. We report Success weighted by Path
Length (SPL) [83] and Soft-SPL (SSPL) [84]. The latter is particularly useful for episodes that are
deemed failures (SPL= 0) but have progressed toward the goal (SSPL> 0). We report these metrics
as an average over 72 runs, as each of the 36 episodes is tested for two different sensor heights
in the execution phase: 1.3m, representing a mobile manipulator such as Stretch [85], and 0.4m,
representing a quadruped robot such as Go1 [86]. We use a fixed sensor height of 1.3m for map
images to test the robustness to cross-embodiment deployment across mapping and execution.

Tasks: As illustrated in Figure 1, we consider four unique navigation tasks: Imitate, where agent
imitates its prior trajectory akin to teach-and-repeat; Alt Goal [55], where an agent needs to visit a
previously seen but unvisited goal, thus having to traverse a new route; Shortcut, where the prior
mapping trajectory has an additional stop at the Alt Goal, so the agent must take a shortcut to the
final goal; and Reverse, where the agent is tested for its ability to travel in the opposite direction of
its prior trajectory. We exclude some episodes for certain tasks if the object goal or the path is found
to be invalid upon manual inspection, as described in the Appendix Section B.2.

5 Results and Discussion

5.1 Image-Relative vs. Object-Relative

Table 1 ablates image-relative and object-relative approaches to learning subgoal-conditioned con-
trol. We report SPL and SSPL on four navigation tasks, averaged over two different sensor heights.
The image-relative baseline is the GNM [3] model trained on the same HM3D data as our object-
relative model ( Section C.1 in the appendix provides a comparison against off-the-shelf GNM
model). On the Imitate task, both the image-relative and the object-relative methods perform sim-
ilarly. However, for the other more challenging tasks, the object-relative controller achieves much
higher performance than its image-relative counterpart. For the Alt Goal task, the image-relative
approach suffers mainly from its reliance on the prior experience of having captured an image of
the object goal from close proximity. In contrast, the trajectory-invariant nature of our object-level
representation enables it to directly reach previously unvisited objects. The Shortcut task highlights
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Table 1: Comparing image-relative and object-relative controllers across four navigation tasks.
Method Imitate Alt Goal Shortcut Reverse

SPL SSPL SPL SSPL SPL SSPL SPL SSPL

Image Relative: GNM [3] 57.58 66.15 2.17 13.54 7.69 18.40 11.60 23.59
Object Relative: ObjectReact (Ours) 59.08 64.62 21.74 27.40 23.08 39.56 26.67 36.69

Table 2: Effect of Embodiment (height) variations during execution for fixed map height of 1.3m.

Method / Robot Height 0.4m 1.3m |∆| (↓ better)

SPL SSPL SPL SSPL SPL SSPL

Image Relative 33.33 45.93 81.82 86.38 48.49 40.45
Object Relative 60.60 68.51 57.56 60.72 3.04 7.79

a different weakness of the image-relative navigation pipelines: their subgoal image selection is
based on ‘temporal’ distance prediction [1, 29, 31] which may not accurately capture geometric or
geodesic distances, thus missing potential shortcuts. On the other hand, the object-to-goal distances
in our object-relative navigation pipeline are already grounded in geometry; thus, it mainly needs to
perform accurate object association, which benefits from our modular design that enables drop-in
replacement of robust perception techniques. On the Reverse task, yet another type of weakness
emerges for image-relative methods in terms of their ability to recognize places from an opposite
viewpoint [87, 88]. This challenging data association task adversely affects both the temporal dis-
tance prediction and the waypoint prediction. Although the same level of challenge applies to the
object-relative controller, it benefits from its ‘partial’ matching [89]; that is, even if a small number
of objects is matched, it could be sufficient to point the agent in the right direction.

Overall, these results show that an object-relative navigation pipeline addresses multiple weaknesses
of its image-relative counterpart, which makes it inherently capable of solving different types of
navigation tasks. However, we note that absolute performance on the more challenging tasks is
much inferior to the simple Imitate (teach-and-repeat) task. We observed that it is largely attributed
to lack of robust perception rather than the learnt controller. This is demonstrated in Section 5.3,
which shows that high performance can be achieved across the board when using the object instance
ground truth from the simulator for segmentation and matching.

5.2 Embodiment Variations based on Robot Height

Embodiment variations can occur in several ways, making it harder to learn a controller that can
generalize well. Even a common variation, such as the height of a robot, can easily trigger failures.
One common solution for this is to train on a diverse set of embodiments to learn invariance, which is
typically achieved by collecting real-world trajectories from many different robots [3]. Although this
enables cross-embodiment deployment across train-test variations, it does not necessarily account
for variations across mapping and execution phases. The latter is particularly important for the reuse
of prior map experience across different robots. It is worth noting that learning mapping-execution
invariance requires trajectory association across different robots in the exact same environment –
this not only increases the training data requirement quadratically, but also increases manual effort
for annotation. Our proposed object-relative navigation pipeline addresses this problem through its
object-level world representation. This leads to high invariance to both the robot’s embodiment and
prior trajectory while isolating the image matching problem from the control learning problem, thus
eliminating the need for associating trajectories across embodiments.

In Table 2, we study the effect of sensor height variations across mapping and execution runs. It
can be observed that the image-relative approach performs really well when the map height (1.3m)
matches the execution height. However, when the execution height is changed to 0.4m, this perfor-
mance drops by an absolute 48% (SPL). On the other hand, our object-relative approach is almost
invariant to such variations, where it seems to slightly benefit from a lower height likely due to an
increased visibility of immediately traversable regions.
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Table 3: Ablation Studies for different types of controllers, map/edges, and conditioning inputs.

Method Imitate Alt Goal Shortcut Reverse
SPL SSPL SPL SSPL SPL SSPL SPL SSPL

PixNav [54] 42.42 51.78 45.65 54.94 19.23 33.04 26.41 39.14
RoboHop [53] 63.52 73.18 45.64 65.38 48.03 57.88 48.28 66.97
(Ours) ObjectReact w. 2D Edges 59.08 71.61 52.17 64.83 19.23 32.12 50.00 64.58
(Ours) ObjectReact w. RGB 63.61 75.08 54.35 71.97 50.00 63.24 56.54 68.17
(Ours) ObjectReact 71.20 82.96 54.32 70.89 59.61 70.40 66.66 73.77

5.3 Ablation Studies

Controller Types: In Table 3, we compare different object-level controller methods: a) Robo-
Hop [53] – a zero-shot controller with a fixed linear velocity and a proportional yaw control based
on a cost-weighted average of the 2D object centers, and b) PixNav [54] – a discrete action con-
troller trained in HM3D to track pixel goals (see Appendix Section B.1 for baseline implementation
details). To observe the controller performance in isolation, we use the WayObject Costmaps gen-
erated using the object instance ground truth and relative 3D edges-based map connectivity. Thus,
both RoboHop and PixNav are provided the same costmap input as ObjectReact for a fair compar-
ison. It can be observed that our proposed method outperforms both PixNav and RoboHop across
the board by large margins.

Topological (2D) versus Topometric (3D) Maps: In Table 3, we ablate two types of intra-image
edges for object connectivity in the map. ObjectReact uses 3D distances between all object pairs to
define intra-image edges. We compare it with 2D Delaunay Triangulation-based intra-image edges
(middle row in Table 3), as proposed in RoboHop [53]. It can be observed that 3D information, even
in the form of a relative 3DSG, is much more informative than its 2D counterpart.

Subgoal conditioning with and without current RGB: Unlike image-relative controllers that re-
quire both the current RGB image and the reference subgoal image, our object-relative controller
only relies on the object subgoals (WayObjects) present within the current RGB observation. This
uniquely allows us to learn control solely from the WayObject Costmap, without requiring an ex-
plicit RGB input. We ablate this aspect of our controller in Table 3, which shows that better gener-
alization is achieved without the RGB input. We speculate that since the current RGB image alone
does not contain explicit information about the goal, an over-reliance on it leads to overfitting on
specific object instances in the training dataset. WayObject Costmap, on the other hand, provides a
representation that is largely invariant to the exact visual appearance of scenes and objects.

6 Conclusion and Future Work

In this work, we proposed an object-relative navigation pipeline with a novel map representation
based on a relative 3D Scene Graph, and a new learnt local controller conditioned only on the
currently-viewed objects represented in the form of a WayObject Costmap. We demonstrated that
the type of subgoal conditioning to learn a local controller has strong implications on its ability to
solve challenging tasks beyond teach-and-repeat and cross-embodiment generalization, particularly
that across mapping and execution phases. We showed that it is possible to achieve such capabilities
by learning an object-relative controller that inherently addresses the limitations of an equivalent
image-relative controller. We presented several ablation studies to show the efficacy of our approach
while also reporting key limitations, e.g., lack of robust perception techniques that are part of our
modular navigation stack. Future work can further extend the capabilities of our method through its
WayObject Costmap representation, which is a generic conditioning variable that can be generated
through alternative sources, e.g., language instructions, exploration objectives, cross-sensor modal-
ities, or directly from a vision LLM. Furthermore, our object-relative navigation pipeline is closer
to the landmark-based navigation strategies observed in human trials [90]; future research in this
direction could bridge the gap between the visual navigation capabilities of humans and robots.
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Appendix

Here, we provide additional details related to method implementation, experimental setup, and lim-
itations. We also include additional results and analyses, especially in reference to real-world and
simulator demonstration videos on our project page: https://object-react.github.io/

A Implementation Details

A.1 WayObject Costmap Representation

We elaborate on our proposed learnable representation of the segmentation masks and their cor-
responding topometric path lengths. Given a variable number (Nm) of binary object masks as a
tensor M ∈ {0,1}H×W×Nm in the current image and their scalar path lengths l to the long-horizon
goal, we obtain the path length encoding E ∈ RNm×D and the WayObject Costmap representation
W ∈ RH×W×D as below:

WH×W×D = MH×W×Nm@ ENm×D (1)

E(l)i =


sin

(
l

Zi/D

)
if i is even

cos
(

l
Z(i−1)/D

)
if i is odd

∀i ∈ [0,D] (2)

where M represents Nm segmentation mask arrays of height H and width W , corresponding to the
currently-viewed objects. E represents a D-dimensional positional encoding [79] of the path lengths
for each of the objects. The path lengths are normalized per image and re-scaled before encoding
such that l ∈ [1,L]Z. l = L represents the shortest path length per image and l = 0 represents outliers
corresponding to undetected and unmatched image segments. We set D = 8, Z = 10000, and L =
100.

A.2 Model Architecture and Loss functions

We base the training of our navigation controllers on GNM [3]. The GNM architecture consists of
two convolutional encoders: one for the current observation image along with a history of 5 previous
images, and the other for the goal image (fused channel-wise with the other inputs). The output of
these two encoders is concatenated and decoded using an MLP and two linear projection heads to
predict: a) local waypoints, that is, position and yaw relative to the current robot position, and b)
distance to the image goal. Our object-relative controller uses a modified version of this architecture
with a single goal encoder for the WayObject Costmap, which is based on a custom ResNet model
with D input channels. Our WayObject Costmap has the same resolution as the images used by GNM
(W = 85, H = 64), but each pixel is represented by its locally-normalized path length encoding E
(see Equation 2). We predict a trajectory rollout of 10 future 2D waypoints in the BEV space of the
robot’s frame of reference. As our object-relative encoders do not require an explicit goal image, we
ignore the distance prediction output.

A.3 Mapping

We used the automatic mask generator of SAM2 [74] (ViT-L) to obtain segmentation masks, sam-
pling 16 points per side and using 1 additional cropping layer with a downsample factor of 2. We
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used CLIP [91] to remove segments if their masked image embedding matched with text string
‘floor’ or ‘ceiling’. We used Superpoint-Lightglue [76] to match every current frame with 3 pre-
vious frames to obtain keypoint correspondences. To enable batching, we used a fixed number of
SuperPoint keypoints (2048) and disabled early stopping and point pruning in LightGlue. To obtain
a local 3D projection of a segment, we used the indoor model checkpoint from Depth Anything [77].

A.4 Localization and Planning

We used FastSAM [75] from Ultralytics for segmentation during the execution phase, using a mask
confidence threshold of 0.5. For localization, we used a submap centered at the reference map
image that is closest to the agent’s current state in the simulator. We used a radius of 16 frames with
a subsampling factor of 2 to obtain the submap images against which the query image is localized
through pairwise image matching (Superpoint-LightGlue [76]). For real-world experiments, the
submap center is calculated as the reference map image that has the most segments matched with the
current query image and its history of 8 frames. For efficient global path planning, we precompute
all path lengths from all the map nodes to the goal node. The goal node is estimated based on the
maximum IoU of the predicted segments with the ground truth segmentation mask of the goal object
– if IoU=0, the episode is deemed a failure, though it occurs rarely. For each matched segment pair
between the query and a reference map image, we look-up the path length from the precomputed
data. As some of the query segments get matched with multiple map nodes, we only consider the
match that has the least path length. For the query segments that could not be localized, we assign
them a path length through a tracking mechanism: we perform pairwise image matching between
the current image and its history of 8 frames, and use these segment correspondences to track path
lengths and assign a median path length to the current query segment that was not localized but could
be tracked. Finally, any undetected, or unlocalized and untracked, image segments are marked as
outliers and encoded with a 0 value, as described in Section A.1.

A.5 Control Execution

We broadly follow GNM [3] in terms of execution of the predicted waypoints. We used the last
waypoint from the predicted trajectory rollout to calculate linear and angular velocities. We clip
the linear velocity between 0 and 0.05 m/s, and the angular velocity between −0.1 and 0.1 rad/s.
We compute a moving window average of these velocity values over predictions from the past 5
image observations. For the real-world experiments, we clip the linear velocity between 0.15 to 0.4
m/s; we execute the predicted velocities on the Unitree Go1 robot dog using its HighCmd control
interface.

A.6 Parameters: Image resolution, field-of-view and agent radius

For our simulator experiments, we consistently used 120◦ field-of-view images. For the mapping
and execution phases, we used an agent radius of 0.75m and an image resolution of 320×240. For
controller training, we used an agent radius of 0.3m, and an image resolution of 85×65 – the same
as that used in GNM [3].

B Experimental Setup

In this section, we provide details of the baseline methods. We also discuss the episodes which were
excluded during the evaluation, which highlights the limitations and implementation overheads of
the underlying simulator.

B.1 Baselines

PixNav [54]: PixNav is a transformer-based imitation learning method for local navigation [54],
which utilizes a patch of goal pixels representing either the final destination or intermediate naviga-
tion targets. This goal patch is initially input to the model as a mask alongside the corresponding
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RGB image, and the model then selects an action from a discrete set: {Stop, MoveAhead, TurnLeft,
TurnRight, LookUp, LookDown}. At each following step, the model uses the current RGB image,
a collision signal, the sequence of previous images, and the initial goal mask to predict the next
action. Unlike RoboHop and our proposed method ObjectReact, which are continuous controllers
with fixed cameras, PixNav operates as a discrete controller with a movable camera. To accommo-
date these differences and align with PixNav’s design, its evaluations were configured to begin with
a visible intermediate goal determined by our global path planner. The goal is then updated either
when the model outputs the ‘Done’ command or when the memory buffer reached capacity. We
used the official model checkpoint provided by the original authors.

RoboHop [53]: We use its zero-shot controller based on path length-weighted 2D pixel centers of
the object segments:

∆φ =
g
w ∑

j
α j(m j −o); α j =

eβd j

∑ j eβd j
(3)

where m j denotes the centroid of segment S j, and o represents the image center. Each d j is the
min-max normalized path length associated with segment S j. The weights α j are computed using a
softmax function with temperature parameter β = 5. The term w refers to the image width, and g is
a fixed gain constant set to 0.4.

B.2 Excluded episodes in evaluation

We procedurally generate object goals for the challenging tasks of Alt-Goal, Reverse, and Shortcut.
Through manual inspection, we then exclude episodes for a task in cases where the goal is invalid,
for example, when the goal is unreachable due to incorrect rendering of the surrounding obstacles or
when it covers a large part of the image (e.g., when only a wall is visible). We also exclude episodes
where the goal does not meet the criteria of the task, for example, when all possible alternative
goals for an episode fall on the path to the original goal. Finally, we exclude scenes with rendering
issues such as i) large areas of missing geometry and ii) areas that are visually traversable but not
reachable in the simulator. This leads to a removal of 6, 16, 13, and 9 episodes for the Imitate,
Alt-Goal, Shortcut, and Reverse tasks respectively, out of 36 original episodes per task.

C Additional Results

C.1 Quantitative Analyses

Comparing different GNM models: In the main paper, we used the GNM model representing an
image-relative approach, which we trained on the same simulator data as that used for our proposed
object-relative method ObjectReact. Here, we include results for the GNM model that was trained
on a variety of real-world outdoor scenes and embodiments, using the official checkpoint provided
by the original authors. As observed in Table 5, both the GNM models – sim and real world –
perform similarly; this shows that the performance gap on the challenging tasks is not attributed to
the training environment or its diversity in terms of embodiment, but instead on the type of world
representation (image- versus object-level) and the subgoal conditioning type (image pairs versus
WayObject costmap).

Scalability of offline mapping and planning We perform planning offline as the map is assumed
to be given. We observed that map/plan time scales roughly linearly with the number of images
(or object nodes). In Table 4 presents compute time of different modules for an increasing map
size, showcasing that a three-floor, 30×36m office building can be mapped in 5 minutes (including
relatively cluttered desks etc.). If mapping were to be performed online, this cost would be amortized
throughout the run.
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Table 4: Scalability analyses of offline mapping and planning on a real-world office building.

Method One floor Two floors Three floors
Num. Images / Nodes 171 / 3521 417 / 7959 639 / 10252

Segmentation FastSAM [75] 18.5s 41.5s 63.2s
Matching SuperPoint-LightGlue [76] 40.1s 94.6s 146.9s
Depth estimation Depth Anything [77] 14.5s 34.0s 51.7s
Planning Dijkstra’s Algorithm [61, 92] 37ms 96ms 112ms

Table 5: Comparing (object-relative) ObjectReact against (image-relative) GNM models, trained on
real world and simulator data.

Imitate Alt Goal Shortcut Reverse
Method Train Data SPL SSPL SPL SSPL SPL SSPL SPL SSPL

GNM Sim 57.58 66.15 2.17 13.54 7.69 18.40 11.60 23.59
GNM Real 48.48 56.18 6.52 17.08 9.62 24.05 3.33 8.54
ObjectReact (Ours) Sim 59.08 64.62 21.74 27.40 23.08 39.56 26.67 36.69

C.2 Qualitative Results and Analyses

We provide details of our real-world and simulated experiments, with reference to the accompany-
ing demonstration videos. Figure 3 provides details of the visualization panel of these videos. We
tested navigation capabilities on the Unitree Go1 robot dog [86] on a variety of tasks and environ-
mental conditions. In the following, we discuss many successful trials that show that object-relative
navigation is a promising avenue for further research.

C.2.1 Simulator Deployment

We have included several example videos of successful runs for our ObjectReact agent deployed in
the simulator. These runs do not use any ground truth object instance information: FastSAM is used
for segmentation and SuperPoint-LightGlue for matching. We have additionally included a deploy-
ment run that uses ground-truth instances, ground truth perception imitate sim.mp4,
to highlight the gap in perception quality that ObjectReact must overcome during deployment us-
ing the inference-based perception pipeline. We also include several failed episodes that demon-
strate failure to avoid objects (e.g. imitate failure sim.mp4), and perception failures

Egocentric
RGB

WayObject
Costmap

Localized
Image*

Waypoint
Predictions

Goal
Segment

Real-world Deployment Simulator Deployment

Path
Taken

Shortest
Path

Start

Goal

Waypoint
Predictions

Egocentric
RGB

WayObject
Costmap

Figure 3: Examples of demonstration videos. Real-world demonstration video example (left) and
simulator video example (right). * The localized image is the closest match found in the map (see
Section A.4 for details).
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Figure 4: Real-world Experiments. We deploy our approach on the Unitree Go1 robot dog [86].
Here, we show egocentric RGB images, their corresponding WayObject Costmaps, and the predicted
trajectory rollout at several timesteps during autonomous navigation to the goal object. At t = 5s,
the policy chooses to turn left towards a region of lower-cost objects. At t = 20s, it successfully
navigates around an obstacle (here visible as a region of low-cost). Finally, at t = 45s, it moves
towards the final goal, subsequently succeeding at reaching the goal object.

when facing away from the goal or in a position that diverges from the mapping run (e.g.
reverse failure sim.mp4). Another failure mode is inability to match the goal segment
in the map. This is more common for Alt Goal and Reverse tasks, where the goal may be on the
periphery of the mapping perspective.

C.2.2 Real-World Deployment

Here we provide a qualitative overview of the deployment of ObjectReact on the Unitree Go1
quadruped robot under various conditions. For each trial, we include the video we used to gen-
erate the map as well as the robot’s egocentric observations during autonomous deployment.

New Obstacle in the Map: Figure 4 illustrates that despite sim-only training, the robot is able
to successfully navigate using our WayObject Costmap-conditioned learnt controller. At t = 5s,
the robot makes a left turn towards an area of lower cost. Part-way through, it navigates around
an obstacle (a region of high cost in the Costmap), and finally reaches the goal object. The map
trajectory for this experiment did not have any obstacles, thus the results here highlight a re-routing
capability when the map has changed. This ability mainly stems from accurate data association
which leaves the unseen node as unmatched, thus leading to a high cost as an outlier.

Cross-embodiment generalisation: We examined cross-embodiment generalization between map-
ping and execution in the real world. We used maps generated from videos taken using a phone cam-
era, and deployed ObjectReact using these maps on the quadruped robot. We have included videos
of a number of successful cross-embodiment demonstrations (those labeled CrossEmbodiment
and several others). This generalization capability could be useful in future for taking advantage of
multiple different sources of mapping data when a robot is navigating in a new or changing environ-
ment.

Alternative tasks: Here we examine the Alt Goal and Shortcut tasks. In
AltGoal humanoidRobot, we demonstrate successful navigation towards an object that
was only visible in the periphery of the mapping run. In Shortcut cutout, we show that
ObjectReact is able to reach the goal along a direct path, even when the mapping run followed a
much longer, winding path to the goal.

Different environmental conditions: We also investigated whether ObjectReact is robust to envi-
ronmental changes between mapping and execution – an expected advantage attributed to the use of
open-set, zero-shot perception models. For LowLight trials, we generated the map with full light-
ing but deployed the robot under low lighting conditions. For DayNight, we generated the map
under natural daylight conditions, but deployed during the evening. In both cases, ObjectReact was
able to successfully generalize due to its WayObject Costmap representation that is largely invariant
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to these changes. In trials marked Obstacles, we also show that ObjectReact can also adapt to
obstacles that were not present during the mapping run.

D Limitations

D.1 Perception

We presented results using two types of perception engines: one based on the ground truth in-
stances from the simulator and the other based on SAM/FastSAM as the segmentor, and SuperPoint-
LightGlue as the matcher. The simulator ground truth based results present an optimistic upper
bound for our learnt controller under a perfect perception setting. In practice, when using inferred
methods, although object-relative controller outperforms its image-relative counterpart, the absolute
performance on the challenging tasks is still subpar. Through qualitative analyses, we found the
following issues with the current state-of-the-art segmentors and matchers: a) SAM [73] is compu-
tationally expensive, so we use it only for offline mapping due to its high precision in producing con-
sistent segmentations, however, we observed that it has low recall in terms of segmenting the entire
image and often missed segmenting certain object instances, e.g., walls; b) FastSAM is highly effi-
cient and we use it during the execution phase, however it often produces overlapping masks which
also lack crisp boundaries; and c) SuperPoint-LightGlue [76] provide sparse local feature matches,
which we observed to have better accuracy-speed trade-off in comparison to dense matchers such
as RoMA [93]; as noted in RoboHop [53], the geometric verification of local feature matching is
preferred over DINOv2-based segment matching for robustness to mismatches during localization.
These findings highlight that accurate data association for image segments/objects still remains an
open research challenge.

D.2 Mapping and Planning

An interesting failure mode of our approach is its path planning through shortcuts created by instance
categories like ceiling and floor. Due to the nature of their geometry, these object nodes usually
have a high degree in the graph, which creates several shortcut paths and reduces the variance of the
overall distribution of path lengths. Although we normalize path lengths per image when generating
costmaps, the aforementioned issue is particularly intensified by a large margin between the low
cost of localized segments and high outlier cost of unmatched or undetected segments. We address
this issue by removing nodes from the map if its CLIP [91] vision embedding matches with the text
“floor” or “‘ceiling”. Other possible solutions for removing such nodes could include depth- and
robot’ height-based plane estimation or using a cut-off on the degree of nodes in the graph. While
this is only a symptomatic solution, the root issue of topologically planning across geometrically-
variable object instances could be addressed by representing objects with an additional set of points
that can capture its spatial extent or by using local 3D boundaries between neighboring objects when
computing path lengths.

D.3 Learnt Controller

We trained a local controller conditioned on high-level representation of subgoals in the form of
WayObject Costmap. Unlike its image-relative counterpart, e.g., GNM [3], we did not use any his-
tory context. This poses limitations when the costmap varies significantly from frame-to-frame due
to potential failures in segmentation and matching. We observed that smoothing the costmap during
the execution phase, by matching objects from the current observation with its history, stabilized
the costmap. An alternative solution could be to learn these dynamics either through a stacked goal
encoder similar to the history stacking of GNM, or by smoothing the goal encoding instead of the
costmaps.
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Figure 5: An illustration of the effect of dynamic objects and occlusions on the predicted control
signal.

D.4 Changes in the Map and Dynamic Objects

Although minor pose changes of the existing objects (e.g., chairs) did not affect our real-world
experiments, any significant scene rearrangement will likely cause failures due to misleading object-
level connectivity of the precomputed map. Figure 5 shows how the predicted trajectory varies with
the dynamic object’s motion, where failures mainly arise under severe occlusion and mismatching
of dynamic obstacles. Note that the controller is not trained to avoid dynamic objects, this behavior
simply emerges from the image matcher’s true-negative detection ability.

D.5 Exploration

In our experiments, we do not modify the initial map based on the observations the robot obtains
during an episode. Ultimately, deployed approaches could use a controller that can explore the
environment when the agent is lost or a goal cannot be identified in the map, while continuing to add
to the map as new observations become available [2, 26, 28]. This would allow image-relative or
object-relative controllers to succeed at the proposed challenging tasks, provided they can explore
efficiently. Our results indicate that WayObject Costmap representation is a suitable starting point
for exploration, as the agent can still progress in a new region even when there are a very few objects
matched against the map.

D.6 Real-world Deployment

In our video demonstrations, we present a number of trials that show that our ObjectReact controller
is able to generalize to real-world settings. However, there are several limitations of our approach
that make real-world deployment challenging. Here, we outline these, enumerate common failure
modes, and discuss our plans for overcoming these limitations in future.

Training-deployment gap: While our WayObject Costmap observations mitigate many problems
of visual generalization to the real world, there are several other challenges our approach must over-
come when deployed on a real robot. First, camera parameters differ between the simulator training
and real-world deployment. Second, the use of FastSAM + LightGlue in deployment for percep-
tion leads to different kinds of perception failures in comparison to those observed during training
(which uses ground-truth simulator perception with data augmentation based on perturbation of path
lengths). Finally, as shortest path demonstrations are used during training, cloning this behaviour
results in an agent that prefers to closely corner around objects, leaving little room for error; also,
the demonstrations go directly to the goal, lacking examples of taking slightly longer routes around
obstacles.

Failure modes: The above issues result in several common failure modes during real-world opera-
tion. These included a) collisions, b) perception failures, and c) deviating from the mapping area.
Because the ObjectReact policy is trained to take the shortest path to the goal, it often leaves little
margin for error when navigating past obstacles, sometimes resulting in collisions during execution
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(see failure close to obstacle.mp4). Perception failures can occur when the perception
pipeline fails to match important segments (like the goal or an obstacle), or matches a segment that
connects to many other objects, resulting in WayObject Costmaps that have large, low-cost regions
that are difficult to differentiate. During deployment, the agent can also deviate from the mapping
area due to perception failures etc., but recovery from this state is not explicitly demonstrated in the
training data (see failure diverged from map matched wall.mp4).

We hope to address the above limitations in future by a) incorporating real-world training data,
b) using a demonstration path-finding algorithm that leaves a larger margin for obstacles where
possible, c) training with the inferred perception pipeline to minimize sim-to-real gap, and d) further
improving the perception pipeline.
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